Skip to main content

The Use of Nitrogen Isotopic Ratio for Reconstruction of Past Changes in Surface Ocean Nutrient Utilization

  • Conference paper
Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 17))

Abstract

Sedimentary 15N/14N ratios can be used as a unique measure of past changes in surface ocean nutrient utilization which in turn is a function of past changes in productivity and nutrient input from deeper waters. Due to isotopic fractionation during nitrate uptake by phytoplankton, partial nutrient utilization produces substantial 15N enrichment in particulate matter reaching the seafloor. Examples are given from the N. Atlantic, Equatorial Pacific, and Southern Ocean. In the latter two regions large variations in nutrient utilization with latitude are observed which go along with gradients in both near-surface ocean and core top 15N/14N. Thus isotopic signals generated in surface waters are transferred and preserved in sediments. First down core results from the Southern Ocean indicate that only modest increases in nutrient utilization and perhaps productivity occured in Subantarctic waters uring the last glacial maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabet MA (1988) Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Res 35: 535–554

    Article  Google Scholar 

  • Altabet MA (1989). A time-series study of the vertical structure of nitrogen and particle dynamics in the Sargasso Sea. Limnol Oceanogr 24: 1185–1201

    Article  Google Scholar 

  • Altabet MA (1990). Organic C, N, and stable isotopic composition of particulate matter collected on glass-fiber and aluminum oxide filters. Limnol Oceanogr 34: 902–909.

    Article  Google Scholar 

  • Altabet MA, Curry WB (1989). Testing models of past ocean chemistry using foraminiferal 15N/14N. Glob Biogeochem Cycles 3: 107–119

    Article  Google Scholar 

  • Altabet MA, Deuser WG (1985) Seasonal variations in natural abundance of N in particles sinking to the deep Sargasso Sea. Nature 315: 218–219

    Article  Google Scholar 

  • Altabet MA, Deuser WG, Honjo S, Stienen S (1991) Seasonal and depth-related changes in the source of sinking particles in the N. Atlantic. Nature 354: 136–139.

    Article  Google Scholar 

  • Altabet MA, Francois R (1993) Sedimentary nitrogen isotopic ratio records surface ocean nitrate utilization. Glob Biogeochem Cycl: submitted

    Google Scholar 

  • Altabet MA, McCarthy JJ (1985) Temporal and spatial variations in the natural abundance of 15N in PON from a warm-core ring. Deep-Sea Res 32: 755–772

    Article  Google Scholar 

  • Altabet MA, McCarthy JJ (1986) Vertical patterns in 15N natural abundance in PON from the surface waters of warm-core rings. J Mar Res 44: 185–201

    Article  Google Scholar 

  • Altabet MA, Small LF (1990) Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton. Geochim Cosmochim Acta 54: 155–163

    Article  Google Scholar 

  • Barber RT, Chavez FP (1991) Regulation of primary productivity rate in the Equatorial Pacific Ocean. Limnol Oceanog 36, 1803–1815

    Article  Google Scholar 

  • Biggs DC, Berkowitz SP, Altabet MA, Bidigare RR, DeMaster DJ, Dunbar RB, Leventer A, Macko SA, Nittrouer CA, Ondrusek ME (1988) A cooperative study of upper-ocean particulate fluxes in the Weddell Sea. In: Proceedings of the Ocean Drilling Program — Initial Reports, Vol 113 Part A. N S F Joint Oceanographic Institutions Inc. pp 77–86

    Google Scholar 

  • Biggs DC, Berkowitz SP, Altabet MA, Bidigare RR, DeMaster DJ, Macko SA, Ondrusek ME, Noh IL (1989) A cooperative study of upper ocean particulate fluxes. In: Proceedings of the Ocean Drilling Program — Initial Reports, Vol 119 Part A. N S F Joint Oceanographic Institutions Inc, pp 109–120

    Google Scholar 

  • Boyle EA (1988) Cadmium: Chemical tracer of deepwater paleoceanography. Paleoceanogr 3: 471–489

    Article  Google Scholar 

  • Bryden HL, Brady EC (1985) Diagnostic model of the three-dimensional circulation in the upper Equatorial Pacific Ocean. J Phys Oceanogr 15: 1255–1273

    Article  Google Scholar 

  • Calvert SE, Nielson B, Fontugne MR (1993) Evidence from nitrogen isotopic ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359: 223–225

    Article  Google Scholar 

  • Charles CD, Fairbanks RF (1990) Glacial-interglacial changes in the isotopic gradients of southern ocean surface water. In: Bleil U, Thiede J (eds)The Geologic History of Polar Oceans: Arctic vs Antarctic, NATO ASI Series 308, Kluwer Academic Pub, pp 519–538

    Google Scholar 

  • Chavez FP (1989) Size distributions of phytoplankton in the Central and Eastern Tropical Pacific. Glob Biogeochem Cycles 3: 27–36

    Article  Google Scholar 

  • Checkley DM Jr., Miller CA (1989) Nitrogen isotope fractionation by oceanic zooplankton. Deep-Sea Res 36: 1449–1456

    Article  Google Scholar 

  • Chen CA, Poisson A, Goyet C (1986) Preliminary Data Report for the INDIVAT I and INDIGO/INDIVAT 3 Cruises in the Indian Ocean. US DOE data report# DOE/NBB-0074

    Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45: 341–351

    Article  Google Scholar 

  • Eppley RW, Chavez FP, Barber RT (1992) Standing stocks of particulate carbon and nitrogen. J Geophy Res 97: 655–661

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680

    Article  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 16: 147–194

    Article  Google Scholar 

  • Francois R, Altabet MA, Burkle LH (1992) Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ15N. Paleoceanogr 7: 589–606

    Article  Google Scholar 

  • Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/intergalcial changes in sediment rain rate in the S W Indian sector of Subantarctic waters as recorded by 230Th, 231Pa, U, and δ15N. Paleoceanogr, in press

    Google Scholar 

  • Froelich PN, Mortlock RA, Shemesh A (1989) Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si) opal formation. Global Biogeochem Cycles 3: 79–88

    Article  Google Scholar 

  • Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33: 1182–1190

    Article  Google Scholar 

  • Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotopic ratios of organisms in a North Pacific bay. Est Coast Shelf Sci 30: 239–260

    Article  Google Scholar 

  • Gordon AL, Molinelli EJ (1986) Southern Ocean Atlas: Thermohaline and Chemical Distribution Data Set. Amerind Publishing Co.

    Google Scholar 

  • Honjo S, Doherty KW (1987) Large aperture time-series sediment traps: design objectives, construction and application. Deep-Sea Res 29: 133–149

    Google Scholar 

  • Keigwin LD, Boyle EA (1989) Late quaternary paleochemistry of high-latitude surface waters. Paleogeogr Palaeoclim Paleoecol 73: 85–106

    Article  Google Scholar 

  • Knauer GA, Martin JH, Bruland K (1979) Fluxes of particulate carbon, nitrogen, and phosphorous in the upper water column of the northeast Pacific. Deep-Sea Res 26: 97–108

    Article  Google Scholar 

  • Knox F, McElroy M (1984) Changes in atmospheric CO2 influence of the marine biota at high latitude. J Geophys Res 89: 4629–4637

    Article  Google Scholar 

  • Labeyrie LD, Duplessy J-C (1985) Changes in the oceanic 13C/12C ratio during the last 140,000 years: high latitude surface water records. Palaeogeogr Palaeoclimat Palaeoecol 50: 217–240

    Google Scholar 

  • Liu K-K, Kaplan IR (1989) The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnol Oceanogr 34: 820–830

    Article  Google Scholar 

  • McCarthy JJ, Carpenter EJ (1983) Nitrogen cycling in near-surface waters of the open ocean. In: Carpenter EJ, Capone DG (eds) Nitrogen in the Marine Envirionment. Academic Press, pp 487–512

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of N along food chains: Further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48: 1135–1140

    Article  Google Scholar 

  • Minagawa M, Wada E (1986) Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterization of biological nitrogen fixation. Mar Chem 19: 245–249

    Article  Google Scholar 

  • Minagawa M, Winter DA, Kaplan IR (1985) Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal Chem 56: 1859–1861

    Article  Google Scholar 

  • Miyake Y, Wada E (1967) The abundance of 15N/14N in marine environments. Rec Oceanog Works Japan 9: 37–53

    Google Scholar 

  • Montoya JP (1990) Natural abundance of 15N in marine and estuarine plankton: Studies of biological isotopic fractionation and plankton processes. PhD, Harvard University

    Google Scholar 

  • Nakatsuka T, Handa N, Wong CS (1992) The dynamic changes of stable isotopic ratios of carbon and nitrogen in suspended and sedimented particulate organic matter during a phytoplankton bloom. J Mar Res 50: 267–296

    Article  Google Scholar 

  • Pena MA, Lewis MR, Harrison WG (1990) Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean. Deep-Sea Res 37: 295–315

    Article  Google Scholar 

  • Rau GH, Arthur MA, Dean WE (1987) 15N/14N variations in cretaceous Atlantic sedimentary sequences: Implication for past changes in marine nitrogen biogeochemistry. Earth Plan Sci Lett 82: 269–279

    Article  Google Scholar 

  • Saino T, Hattori A (1980) 15N natural abundance in oceanic suspended particulate matter. Nature 283:752–754

    Article  Google Scholar 

  • Saino T, Hattori A (1987) Geographical variation in the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Res 34: 807–827

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler R (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308: 621–624

    Article  Google Scholar 

  • Siegenthaler U, Wenk T (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308: 624–626

    Article  Google Scholar 

  • Toggweiler R, Sarmiento JL (1985) Glacial to interglacial changes in atmospheric carbon dioxide: the critical role of ocean surface water in high latitudes. In: Sundquist ET and Broecker WS (eds) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, AGU Monograph 32, pp 163–184

    Chapter  Google Scholar 

  • Voss M (1991) Räumliche und Verteilung stabiler isotope (δ15N, δ13C) in suspendierten and sedimentierten partikeln im Nördlichen Nordatlantik. Ph D, Christian -Albrechts Universität zu Kiel

    Google Scholar 

  • Wada E (1980) Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Goldberg ED, Horibe Y (eds) Isotope Marine Chemistry, pp 375–398

    Google Scholar 

  • Wada E, Hattori A (1976) Natural abundance of N in particulate organic matter in the North Pacific Ocean. Geochim Cosmochim Acta 40: 249–251

    Article  Google Scholar 

  • Wada E, Hattori A (1978) Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobio J 1: 85–101

    Article  Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res 34: 829–841

    Article  Google Scholar 

  • Weiss RF, Boecker WS, Craig H, and Spencer D (1983) GeoSecs Indian Ocean Expedition, Vol 5, Hydrographic Data. U S Gov Printing Office, Washington DC

    Google Scholar 

  • Williams PM, Robertson KJ, Soutar A, Griffin SM, Druffel ERM (1992) Isotopic signatures (14C, 13C, 15N) of tracers of sources and cycling of soluble and particulate organic matter in the Santa Monica Basin, California. Prog Oceanogr 30: 253–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altabet, M.A., Francois, R. (1994). The Use of Nitrogen Isotopic Ratio for Reconstruction of Past Changes in Surface Ocean Nutrient Utilization. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78737-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78737-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78739-3

  • Online ISBN: 978-3-642-78737-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics